1/28/2013

irisan kerucut

Terdapat 4 macam irisan kerucut: lingkaran, parabola,elips, hiperbola

Definisi

Lingkaran
Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap suatu titik tertentu.
  • Titik tertentu itu disebut pusat lingkaran
  • Jarak yang sama itu disebut jari-jari/radius (r)
Luas lingkaran = π.r2 (r = jari-jari)
Contoh gambar:
Lingkaran dengan pusat (0, 0) dan jari-jari 2

Parabola
Parabola adalah tempat kedudukan titik-titik yang berjarak sama terhadap sebuah titik dan sebuah garis tertentu.
  • Titik itu disebut fokus/titik api (F)
  • Garis tertentu itu disebut garis direktris/garis arah
  • Garis yang melalui F dan tegak lurus dengan garis arah disebut sumbu simetri parabola
  • Titik potong parabola dengan sumbu simetri disebut puncak parabola
  • Tali busur terpendek yang melalui F disebut Latus Rectum → tegak lurus dengan sumbu simetri
Contoh gambar:
Parabola horisontal dengan puncak (0,0), fokus (1, 0), dan garis arah x = –1

Parabola vertikal dengan puncak (0,0), fokus (0, 1), dan garis arah y = –1

Elips
(1) Elips adalah tempat kedudukan titik-titik yang jumlah jaraknya terhadap 2 titik tertentu tetap.
  • Jumlah jarak itu = 2a (untuk elips horisontal) atau 2b (untuk elips vertikal)
  • Kedua titik tetap itu disebut fokus (F) → jarak antara F1 dan F2 adalah 2c
(2) Elips adalah tempat kedudukan semua titik yang perbandingan jaraknya terhadap sebuah titik dan sebuah garis tetap = e (eksentrisitet), dimana 0 < e < 1
  • Titik itu adalah fokus (F), dan garis itu adalah garis arah.
  • Ruas garis yang melalui kedua fokus dan memotong elips disebut sumbu mayor
  • Pusat elips adalah titik tengah F1 dan F2
  • Ruas garis yang melalui pusat, tegak lurus sumbu mayor dan memotong elips disebut sumbu minor
Luas Elips = π.a.b  (a = ½ panjang horisontal; b = ½ panjang vertikal)
Contoh gambar:
Elips horisontal dengan pusat (0, 0), puncak-puncak (5, 0), (–5, 0), (0, 4), (0, –4), fokus (3, 0), (–3, 0), dan garis arah x = ±25/3

Elips vertikal dengan pusat (0, 0), puncak-puncak (√2, 0), (–√2, 0), (0, 2), (0, –2), fokus (0,√2), (0, –√2), dan garis arah y = ±2√2/3

Hiperbola
(1) Hiperbola adalah tempat kedudukan titik-titik yang selisih jaraknya terhadap 2 titik tertentu tetap
  • Selisih jarak itu = 2a (untuk elips horisontal) atau 2b (untuk elips vertikal)
  • Kedua titik tetap itu disebut fokus (F) → jarak antara F1 dan F2 adalah 2c
(2) Hiperbola adalah tempat kedudukan semua titik yang perbandingan jaraknya terhadap sebuah titik dan sebuah garis tetap = e , dimana e > 1
  • Titik-titik tertentu itu disebut fokus (F1 dan F2)
  • Garis yang melalui titik-titik F1 dan F2 disebut sumbu transvers (sumbu utama)/ sumbu nyata
  • Titik tengah F1 dan F2 disebut pusat hiperbola (P)
  • Garis yang melalui P dan tegak lurus sumbu transvers disebut sumbu konjugasi (sumbu sekawan)/ sumbu imajiner
  • Titik-titik potong hiperbola dan sumbu transvers disebut puncak hiperbola
  • Garis yang melalui fokus dan tegak lurus pada sumbu nyata dan memotong hiperbola di 2 titik → ruas garis penghubung kedua titik tersebut = Latus Rectum
Contoh gambar:
Hiperbola horisontal dengan pusat (0, 0), puncak (2, 0), (–2, 0), fokus (√6, 0), (–√6, 0),  dan asimtot y = ± ½√2 x

Hiperbola vertikal dengan pusat (0, 0), puncak (√2, 0), (–√2, 0), fokus (0, √6), (0, –√6),  dan asimtot y = ± ½√2 x

Persamaan


Tips!
Cara membedakan persamaan-persamaan irisan kerucut:
  • Pada persamaan Lingkaran: koefisien x2 dan y2 sama
  • Pada persamaan Parabola: hanya salah satu yang bentuknya kuadrat (x2 saja atau y2 saja)
  • Pada persamaan Elips: koefisien x2 dan y2 bertanda sama (sama-sama positif atau sama-sama negatif)
  • Pada persamaan Hiperbola: koefisien x2 dan y2 berbeda tanda (salah satu positif, yang lain negatif)
Contoh:
  • 3x2 + 3y2 + 6x + y = 5 → Persamaan Lingkaran
  • 3x2 + 3y + 6x = 5 → Persamaan Parabola
  • 3x2 + y2 + 6x + y = 5 → Persamaan Elips
  • 3x2 – 3y2 + 6x + y = 5 → Persamaan Hiperbola

Kedudukan Titik terhadap Irisan Kerucut

Cara mencari kedudukan titik terhadap kerucut:
  1. Jadikan ruas kanan pada persamaan irisan kerucut = 0
  2. Masukkan koordinat titik pada persamaan:
→    Jika hasil ruas kiri < 0 → titik berada di dalam irisan kerucut
→    Jika hasil ruas kiri = 0 → titik berada tepat pada irisan kerucut tersebut
→    Jika hasil ruas kanan > 0 → titik berada di luar irisan kerucut
Contoh:
Tentukan kedudukan titik (5, –1) terhadap elips dengan persamaan 3x2 + y2 + 6x + y = 5
Cara:
3x2 + y2 + 6x + y – 5 = 0
Ruas kiri: 3.52 + (–1)2 + 6.5 + (–1) – 5  = 75 + 1 + 30 – 1 – 5 =100
→ 100 > 0, jadi titik (5, –1) berada di luar elips tersebut

Kedudukan Garis terhadap Irisan Kerucut

Cara mencari kedudukan garis terhadap irisan kerucut:
  1. Persamaan garis dijadikan persamaan x = … atau y = …
  2. Substitusikan persamaan garis itu pada persamaan irisan kerucut, sehingga menghasilkan suatu persamaan kuadrat.
  3. Hitung nilai Diskriminan (D) dari persamaan kuadrat tersebut (Ingat! D = b2 – 4.a.c)
→    Jika D < 0 → garis berada di luar irisan kerucut
→    Jika D = 0 → garis menyinggung irisan kerucut di 1 titik
→    Jika D > 0 → garis memotong irisan kerucut di 2 titik
Contoh:
Tentukan kedudukan garis x + 2y = 4 terhadap parabola dengan persamaan 3x2 + 3y + 6x = 5
Cara:
Garis: x = 4 – 2y
3(4 – 2y)2 + 3y + 6(4 – 2y) – 5 = 0
3(16 – 16y + 4y2) + 3y + 24 – 12y – 5 = 0
48 – 48y + 12y2 + 3y + 24 – 12y – 5 = 0
12y2 – 57y + 67 = 0
D = b2 – 4.a.c = (–57)2 – 4.12.67 = 33
Karena D > 0 maka garis x + 2y = 4 memotong parabola tersebut

No comments:

Post a Comment